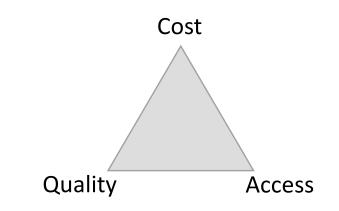
Digital Transformation for Smart Healthcare

Rajiv Kohli

rajiv.kohli@mason.wm.edu


http://masonweb.wm.edu/rajiv.kohli/

Twitter @profkohli

Change is coming to healthcare...

Smart healthcare requires rethinking ...

- How we view healthcare? Social contract or freemarket solution? Personal responsibility or a human right?
- How we deliver care? Data driven, Personalized, Proactive, At-home
- How we pay for healthcare? Fee for service, Managed care, Value-based? Who bears the risk?

THE WALL STREET JOURNAL.

BUSINESS

The Million-Dollar Cancer Treatment: Who Will Pay?

So far, few patients have received the new drugs, as commercial health plans and Medicare wrestle with how to cover the treatment

Martin Fries, a 62-year-old pharmacist from Kissimee, Fla., received CAR-T cell therapy at Moffitt Cancer Center in Tampa. PHOTO: EVE EDELHEIT FOR THE WALL STREET JOURNAL

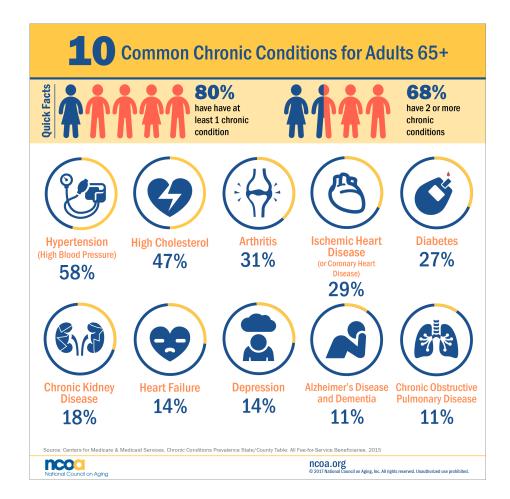
By Jonathan D. Rockoff April 26, 2018 7:00 a.m. ET 84 COMMENTS

Million-Dollar Treatment

A new wave of gene-based therapies for cancer and other diseases threatens to bring the cost of treatment to a million dollars, because both the drug and related care are expensive.

	CAR-T Cell Therapy	Esti Lower end	mates Upper end
	1. Pre-treatment testing CT scans, blood work and other testing to see if a patient is eligible for treatment.	\$500	\$3,000
n	2. Apheresis The patient's cells are taken so they can be sent to the drug company, which weaponizes the cells.	3,000	6,000
	3. Conditioning Chemotherapy is given to start attacking the cancer and deplete the patient's immune system, so the CAR-T can flourish.	7,500	15,000
	4. Treatment At the hospital, specially trained staff prepare the weaponized cells for infusion in the patient. The patient is then given the therapy, kind of like getting an IV.	375,000	479,000
A	5. Post-treatment monitoring Hospitals observe the patients for about two weeks for serious side effects, such as high fever and delirium, and treat them as needed.	50,000	400,000
	6. Post-discharge monitoring The patient must be seen regularly for months after treatment to ensure the disease has responded and the patient is healthy.	27,500	65,000
	Total cost of treatment	\$463,500	\$968,000
Source: Hosp	ital estimates		

Healthcare expenditures

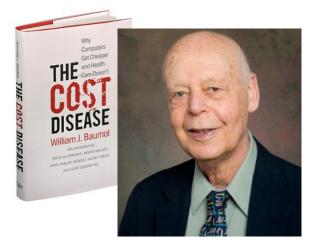

- Hong Kong's total expenditure on healthcare in 2020 was US\$22.7 billion or 6.2 percent of GDP
 - o India 3.2%
 - o USA 18%
- Per capita health expenditures in 2019
 - o India \$211
 - China \$880
 - o USA \$11,945

https://www.trade.gov/country-commercial-guides/hong-kong-healthcare

Utilization for Chronic Disease Patients is the highest

- Chronic disease treatment consumes as much as 86% of U.S. healthcare costs
- Diabetes, the seventh leading cause of death in the U.S., affects the kidneys, blood vessels, eyes and heart
- 68% of people over the age of 65 with diabetes die from heart disease

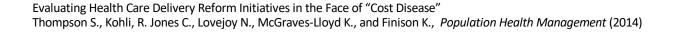
Source: CDC.gov


Chronic diseases account for 80% of deaths in China, 70% in USA

- Diabetes is among the leading chronic diseases in the population. In 2017
 - o 11.2% in China (1% in 1980)
 - 11.2% in India (in urban areas)
 - $_{\odot}$ 10.5% in USA
- One in three of world's adults with diabetes is in China (WHO, 2016)
- Two-thirds of diabetes cases were undiagnosed
- Only 25.8% of diabetics were receiving treatment
- Over half of Chinese adults were prediabetic

Sources: https://www.healthline.com/health/diabetes/diabetes-in-india#by-the-numbers http://www.cdc.gov/nccdphp/overview.htm https://www.scmp.com/lifestyle/health-beauty/article/1934513/one-three-worlds-adults-diabetes-china-who-reports https://en.wikipedia.org/wiki/Chronic_disease_in_China#Economic_consequences https://www.medscape.com/viewarticle/810357 Journal of the American Medical Association (2013)

How to Deal with Rising Healthcare Costs? Baumol's "Cost Disease" vs. Koop et al.'s Utilization Reduction


William J. Baumol

The NEW ENGLAND JOURNAL of MEDICINE

C. Edward Koop; The Health Project

Healthcare costs as a percent of GDP will continue to rise. This is a sign of an affluent society.

Healthcare costs can be controlled by reducing the need and demand for medical services [utilization].

Digital Transformation First Principles

- 1. Minimize or eliminate friction in an exchange enabled by digital technologies
- 2. Digital technologies are Social, Mobile, Analytics, Collaborative and Internet of Things (SMACIT)
- 3. Reimagine activities in an exchange
 - a. Social exchange Facetime with Mom
 - b. Business exchange telehealth visit with physician
 - c. Knowledge exchange -- Patientslikeme.com
- 4. Weave activities into a digitally-enabled process that creates value

Healthcare Digital Transformation removes friction in

- Patient engagement
- Coordination of patient care
- Dissemination of learning from population health to individual healthcare

Patient engagement in chronic disease management

Exit 🜔	COPD CO-P		Add Items	Breakfast		CANCEL
l Please tap the nur your breathlessne				MEAL SIZE		The best part: It's not about counting calories.
0 None	2	0.5 Very Mild	large	medium	small	We want to help you focus on the quality of your food, not on the calories. Feel good about eating, not guilty.
Less Mild 4 Less Moderate 7 Less Severe	Mild 5 Moderate 8 Severe 10 Extreme	More f 6 More Mo 9 More So	숡 not very	HEALTHINESS	合合 mostly	
<previou< td=""><td>s</td><td>Next></td><td></td><td>FINISH</td><td></td><td></td></previou<>	s	Next>		FINISH		
			Þ	0		DACK OUD NEXT

Source: Landro, L. (2017) How Apps Can Help Manage Chronic Diseases, Wall Street Journal, June 25

Coordination of Care issues in Healthcare

- Policy issues -- Focus on Wellness, Chronic diseases, Racial disparities
- Cultural issues -- Privacy, Mental health, End-of-Life planning
- Scientific issues -- Gene editing, CRISPR, Neurologic
- Political issues -- Medicare for All, how to fund healthcare, Women's health
- Market issues -- Democratization of healthcare with cheaper, easy, personalized, and close to home care
- Technology issues -- Artificial Intelligence and Machine Learning how to debias

Dissemination of Learning in Healthcare

A successful data plan will focus on three core elements.

Health-care industry, public-payer illustration

Interlinked data inputs	+	Analytic models	Decision-support tools 📃 Business value
Universal IDs Patient demographics	F	Disease management Predict hospitalization risk for individual patients	Patient-risk-score Reduced spending on calculator; patient-workflow patients with chronic diseases
Physician ID Hospital ID	->	Outcome evaluation Measure cost and quality of treatment, adjusted for patient morbidity	Contract-evaluation tool; More cost-efficient pay-for-performance care models
Treatment data Diagnoses	->	Guideline compliance Monitor treatment of patients with chronic diseases and compare with medical guidelines	Patient-treatment Reduced spending- monitor; physician-alert eg, on unnecessary tool hospital stays
Pročedures Drugs and dosages Medical aids	-	Productivity comparison Compare hospital's productivity with that of others, accounting for patients' health and demographics	Outside-in productivity- benchmarking tool for hospital staff
Cost data Hospital care Primary care	-	Claims validation Use comprehensive patient data to find unexpected patterns in diagnoses/treatments	Radar to detect upcoding ¹ ; Increased share of claim-inconsistency engine successfully rejected claims
Specialty care Prescriptions	Ļ	Real-world evidence Measure efficacy of specific drugs or procedures	Patient-treatment matching Negotiated discounts or tool; drug-efficacy rejected reimbursement comparison tool for selected drugs

Biesdorf, Court, and Willmott, McKinsey Quarterly, 2013

Innovative business models in Healthcare

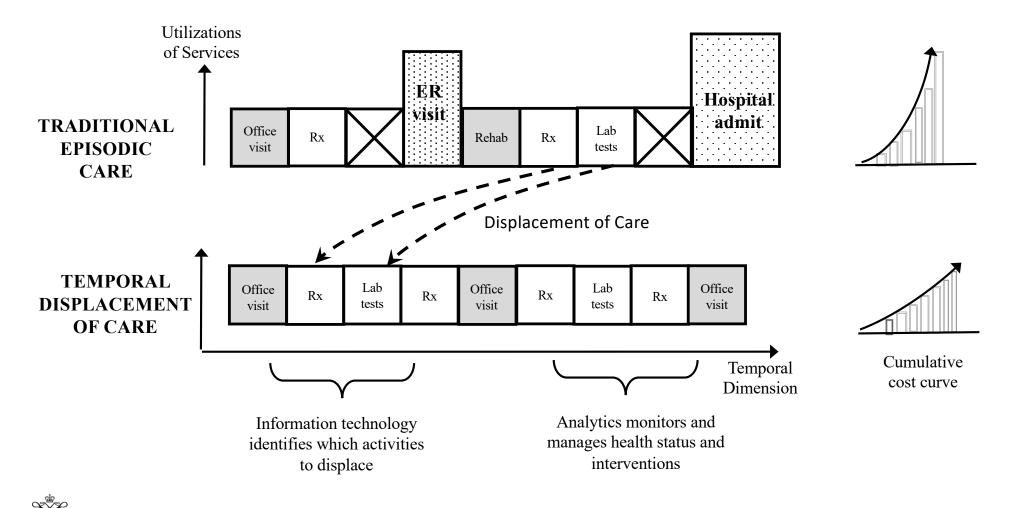
- OpenTable as model for iTriage
- Patientslikeme.com (Facebook groups)
- Cellscope's Oto iPhone takes images of ear canal (mTailor)
- Nomad for locum physicians (Uber)
- Amazon's Alexa uses AI to schedule urgent care appointments, track drugs shipped, check health insurance benefits and reads blood sugar results

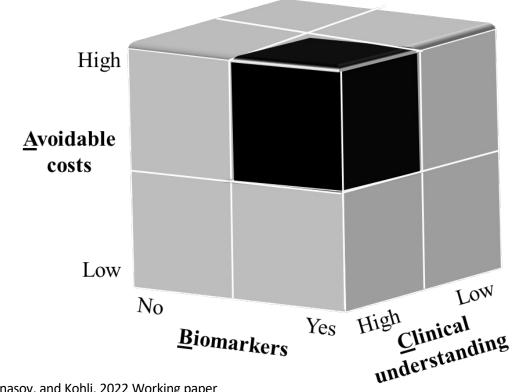
Source: PwC Health Research Institute | Healthcare's new entrants: Who will be the industry's Amazon.com

Temporal Displacement of Care

Thompson S., Whitaker J., Kohli, R. and Jones C. (2020) Chronic Disease Management: How IT and Analytics Create Healthcare Value through the Temporal Displacement of Care, *MIS Quarterly*, 44 (1), pp. 227-256

Care patterns of diabetes chronic disease

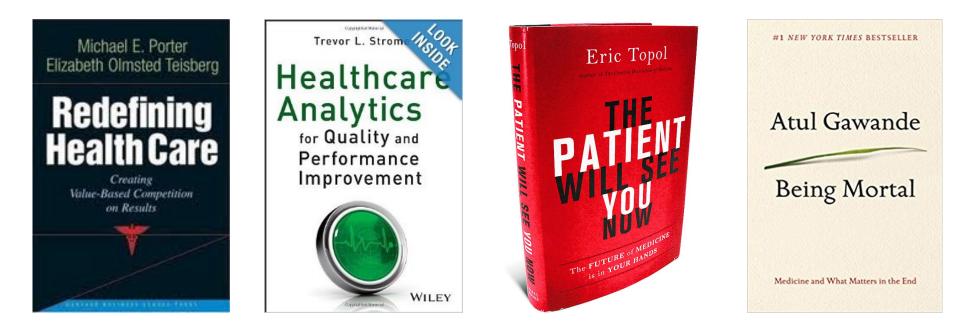

Intervention level	Low	Medium	High
Treatment venue	Physician office and outpatient visit	Emergency room visit	Inpatient hospital admission
Description	Low-cost interventions are treatments that can be performed in the physician office or outpatient treatment center	Medium cost interventions include treatments that require constant medical supervision but do not require hospitalization	High-cost interventions include treatments related to advanced disease and typically require hospitalization
Examples	Routine screening, nutrition and lifestyle counseling, laboratory testing, and eye and neuropathy exams	Intravenous insulin and anti-hypertensive therapy	Coronary artery bypass grafts, angioplasty, coronary artery stent, limb amputation, kidney dialysis, and organ transplant


Theory of Temporal Displacement of Care (TDC)

- TDC proposes that healthcare organizations can create value for providers of chronic disease care by using IT and analytics to *displace the time at which clinicians and patients make interventions*
- Theory base: Temporality in Operations literature
 - Total Quality Management (Deming, 1986; Hackman and Wageman 1995)
 - Delayed differentiation created through standardization, using common components in multiple products, and modularization (Lee and Tang 1997), <u>Example</u>: a "vanilla" computer, to which components are added per demand

A-B-C Cube to prioritize chronic conditions

Thompson, Whitaker, Atanasov, and Kohli, 2022 Working paper



Smart Healthcare needs cross-disciplinary research

- <u>Service</u> Excellence Consumer behavior, Trust
- Digital <u>infrastructure</u> data standards, cybersecurity, systems integration
- <u>Personalized</u> medicine and tele-health design science
- <u>Change</u> and Process Management
- <u>Cost</u> management Activity Based Costing, Pay for performance
- <u>Pricing</u> of pharmaceutical and medical devices
- Understanding business <u>risk</u> Actuarial science
- Predictive <u>analytics</u> intervening for patients "at-risk"

Further reading

Rajiv Kohli

rajiv.kohli@mason.wm.edu

http://masonweb.wm.edu/rajiv.kohli/

Twitter @profkohli

		Average annual per-capita cost for ACRG3* of all Chronic Diseases							
ACRG3 STATUS	2009	2010	2011	2012	2013	2014			
1	\$834.32	\$860.93	\$888.95	\$915.98	\$969.79	\$997.08			
2	\$3,227.71	\$3,213.99	\$3,235.93	<u>\$3,394.78</u>	\$3,495.04	\$3,631.87			
3	\$3,766.08	\$3,925.37	\$3,917.06	\$4,026.37	\$4,144.92	\$4,288.33			
4	\$6,776.59	\$7,111.12	\$7,244.89	\$7,384.58	\$7,540.80	\$7,663.98			
5	\$6,679.76	\$6,882.97	\$7,125.80	\$7,381.59	\$7,760.06	\$8,033.34			
6	\$15,522.84	\$16,166.60	\$16,758.83	\$17,463.24	\$18,271.48	\$19,298.84			
7	\$48,940.41	\$47,046.86	\$49,227.56	\$54,672.28	\$47,022.83	\$49,067.53			
8	\$58,852.36	\$60,867.94	\$64,444.16	\$67,714.11	\$73,378.25	\$80,457.09			
9	\$34,519.20	\$42,512.87	\$44,988.06	\$44,401.08	\$46,767.64	\$45,364.26			
*Aggregated Clinical Risk Groups (ACRG3) Scores									

Distribution of ACRG3 in Chronic Diseases Examine aggregated or each Chronic Disease separately?

ACRG3										Acronym	Condition
ACRG3	CHD	CHF	COPD	DEP	DM	HTN	CA		CHANGE	CHD	Coronary heart disease
1	0%	0%	0%	0%	0%	0%	0%	0%		CHF	Congestive heart failure
2	0%	0%	0%	0%	0%	0%	0%	0%	0%	COPD	Chronic obstructive pulmonary dise
3	30%	0%	0%	10%	14%	20%	3%	77%	77%	DEP	Depression
4	55%	3%	1%	13%	29%	35%	8%	144%	67%	DM	Diabetes mellitus
5	63%	4%	3%	16%	35%	38%	14%	173%	29%	HTN	Hypertension
6	66%	12%	7%	22%	47%	42%	28%	224%	51%	CA	Cancer
7	65%	26%	7%	29%	52%	46%	33%	258%	34%		
8	74%	29%	9%	33%	58%	53%	43%	299%	41%		
9	65%	32%	10%	45%	62%	50%	37%	301%	2%		
AVERAGE	46%	12%	4%	19%	33%	32%	18%	\wedge			

Percentages are greater than 100 because patients can have multiple chronic diseases

